首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   970篇
  免费   97篇
  国内免费   283篇
安全科学   87篇
废物处理   16篇
环保管理   228篇
综合类   526篇
基础理论   132篇
污染及防治   264篇
评价与监测   52篇
社会与环境   34篇
灾害及防治   11篇
  2024年   1篇
  2023年   22篇
  2022年   40篇
  2021年   48篇
  2020年   37篇
  2019年   45篇
  2018年   35篇
  2017年   42篇
  2016年   44篇
  2015年   47篇
  2014年   53篇
  2013年   69篇
  2012年   70篇
  2011年   68篇
  2010年   46篇
  2009年   83篇
  2008年   59篇
  2007年   65篇
  2006年   68篇
  2005年   46篇
  2004年   59篇
  2003年   32篇
  2002年   35篇
  2001年   54篇
  2000年   38篇
  1999年   17篇
  1998年   30篇
  1997年   20篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   7篇
  1992年   8篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   6篇
  1986年   1篇
  1985年   6篇
  1984年   2篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1972年   2篇
排序方式: 共有1350条查询结果,搜索用时 656 毫秒
61.
ABSTRACT: This paper presents a method for estimating aquifer dispersivities in solute transport models. Sensitivity equations are derived for the calculation of sensitivity coefficients. A modified Gauss-Newton algorithm is used to perform the least-squares minimization. A statistical procedure is outlined to assess reliability of the estimated parameters. The solute transport model is solved by the upstream weighted, multiple cell balance method which combines the concepts of local mass balance and finite element approximations. A one-dimensional solute transport problem in a vertical column system is first used to illustrate the inverse technique. A second example considers the parameter identification problem for three-dimensional solute transport with a unidirectional steady and uniform flow field. The third example solves the parameter identification problem in a three-dimensional, stream-aquifer, solute transport system with steady state flow. Numerical experiments are conducted to study data requirements for parameter identification.  相似文献   
62.
Abstract: The transport of reactive contaminants in the subsurface is generally affected by a large number of nonlinear and often interactive physical, chemical, and biological processes. Simulating these processes requires a comprehensive reactive transport code that couples the physical processes of water flow and advective-dispersive transport with a range of biogeochemical processes. Two recently developed coupled geochemical models that are both based on the HYDRUS-1D software package for variably saturated flow and transport are summarized in this paper. One model resulted from coupling HYDRUS-1D with the UNSATCHEM module. While restricted to major ion chemistry, this program enables quantitative predictions of such problems as analyzing the effects of salinity on plant growth and the amount of water and amendments required to reclaim salt-affected soil profiles. The second model, HPI, resulted from coupling HYDRUS-1D with the PHREEQC biogeochemical code. The latter program accounts for a wide range of instantaneous or kinetic chemical and biological reactions, including complexation, cation exchange, surface complexation, precipitation dissolution and/or redox reactions. The versatility of HP1 is illustrated in this paper by means of two examples: the leaching of toxic trace elements and the transport of the explosive TNT and its degradation products.  相似文献   
63.
ABSTRACT: Riffles in moderately entrenched stream reaches with gradients of 2 percent to 4 percent that have received excessive sediment from upstream have a distinctly different and higher proportion of smaller mobile particles than riffles in systems that are in dynamic equilibrium. The mobile fraction on the riffle can be estimated by comparing the relative abundance of various particle sizes present on the riffle with the dominant large particles on an adjacent bar. Riffle particles smaller than the dominant large particles on the bar are interpreted as mobile. The mobile percentile of particles on the riffle is termed “Riffle Stability Index” (RSI) and provides a useful estimate of the degree of increased sediment supply to riffles in mountain streams. The RSI addresses situations in which increases in gravel bedload from headwaters activities is depositing material on riffles and filling pools, and it reflects qualitative differences between reference and managed watersheds. The RSI correlates well with other measures of stream channel physical condition, such as V and the results of fish habitat surveys. Thus, it can be used as an indicator of stream reach and watershed condition and also of aquatic habitat quality.  相似文献   
64.
Pilgrim NK 《Disasters》1999,23(1):45-65
In November 1989 a major landslide destroyed the link road to the village of Sapni in Kinnaur District of Himachal Pradesh in the Indian Himalaya. Although aware of the risk of further landslide activity, the community has campaigned successfully for reconstruction of the road. Decisions of this kind take place at the local level, through village institutions and open debate, with good feedback between villages and district government authorities. In this way a balance is established between meeting more immediate needs (such as domestic water supply, irrigation, road access) and taking acceptable risks. Using the Sapni landslide as a case study, this paper explores the issue of 'acceptable risk', and looks at the existing strategy for risk and disaster reduction in the district.  相似文献   
65.
公路运输化学事故应急救援体系研究   总被引:4,自引:2,他引:2  
以动态源的定义为基础 ,结合危化品公路运输特殊性 ,阐述了危化品在公路运输过程中发生化学事故后应急救援的原则、工作特点与基本要求 ;提出化学事故应急救援中的基本任务是控制危险源 ,抢救受害人员 ,指导并组织群众疏散、自救和做好事故现场清理洗消工作 ,消除危害后果 ;提出公路运输化学事故应急救援预案系统建设的总体目标是 ,在应用ITS智能交通系统对动态源精确定位的基础上 ,建立公路运输化学事故应急救援预案动态库及应急救援组织保障系统和应急救援技术支持系统 ,一旦事故发生 ,能够做到尽快有效处理 ,最大限度地减小或消除事故损失。  相似文献   
66.
A field study at Coeur dAlene Lake, Idaho, USA, was conducted between October 1998 and August 2001 to examine the potential importance of sediment–water interactions on contaminant transport and to provide the first direct measurements of the benthic flux of dissolved solutes of environmental concern in this lake. Because of potential ecological effects, dissolved zinc and orthophosphate were the solutes of primary interest. Results from deployments of an in situ flux chamber indicated that benthic fluxes of dissolved Zn and orthophosphate were comparable in magnitude to riverine inputs. Tracer analyses and benthic-community metrics provided evidence that solute benthic flux were diffusion-controlled at the flux-chamber deployment sites. That is, effects of biomixing (or bioturbation) and ground-water interactions did not strongly influence benthic flux. Remediation efforts in the river might not produce desired water-quality effects in the lake because imposed shifts in concentration gradients near the sediment–water interface would generate a benthic feedback response. Therefore, development of water-quality models to justify remediation strategies requires consideration of contaminant flux between the water column and underlying sediment in basins that have been affected by long-term (decadal) anthropogenic activities.  相似文献   
67.
Mineralogical compositions and their spatial distributions are important initial conditions for reactive transport modeling. However, popular Kd-based "reactive" transport models only require contaminant concentrations in the pore fluids as initial conditions, and minerals implicitly represent infinite sources and sinks in these models. That situation results in a general neglect of mineralogical characterization in site investigations. This study uses a coupled multi-component reactive mass transport model to predict the natural attenuation of a ground water plume at a uranium mill tailings site in western USA. Numerous ground water geochemistry data are available at this site, but mineralogical data are sketchy. Even given the well-defined pore fluid chemistry, variations of secondary mineral species and mineral abundances in the aquifer resulted in significantly different modeling outcomes. Results show that the amount of calcite in the aquifer determines the distances of plume migration. The possible presence of jurbanite, an aluminum sulfate phase, can store acidity temporarily but cause more severe contamination on a later date. The surfaces of iron oxyhydroxides can store significant amounts of sulfate and protons and serve as a second source for prolonged contamination. These simulations under field conditions illustrate that mineralogical compositions are an essential requirement for accurate prediction of contaminant fate and transport.  相似文献   
68.
Abstract: Dissolved inorganic nitrogen (DIN) retention‐transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ~3 mg‐N/l to <0.1 mg‐N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification‐denitrification. Numerical simulations of seasonal hyporheic sediment nitrification‐denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989‐93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel features such as sloughs, wetlands and floodplains that provide surface water‐ground water connectivity, will be required to develop effective nitrate management strategies.  相似文献   
69.
70.
Abstract:  The state of Michigan is interested in removing two low‐head dams in an 8.8 km reach of the Kalamazoo River between Plainwell and Otsego, Michigan, while minimizing impacts locally and to downstream reaches. The study was designed to evaluate the erosion, transport, and deposition of sediments over a 37.3‐year period using the channel evolution model CONCEPTS for three simulation scenarios: Dams In (DI), Dams Out (DO), and Design (D). The total mass of sediment emanating from the channel boundary, for the DI case, shows net deposition of 4,100 T/y for the study reach, with net transport (suspended and bed load) of 10,500 T/y passing the downstream boundary. For the DO case, net erosion is 19,200 T/y with net transport of 30,100 T/y (187% increase) passing the downstream boundary. For the D case, net deposition is 2,570 T/y (37% decrease) with transport of 14,200 T/y (35% increase) passing the downstream boundary. The most significant findings were: (1) removal of the low‐head dams will cause significant erosion of sediments stored behind the dams and increased sediment loads passing the downstream boundary and (2) sediment loads for the proposed channel design are similar to existing conditions and offer reduced fine‐sediment loadings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号